ЗАБА Математические олимпиады и олимпиадные задачи
Задачная база >> Разное >> Математический кружок. 1-й год >> Четность >> Четность и нечетностьПоказать решения
С.А.Генкин, И.В.Итенберг, Д.В.Фомин. Математический кружок. Четность. Четность и нечетность

Задача 16:

Можно ли разменять 25 рублей при помощи десяти купюр достоинством в 1, 3 и 5 рублей?

Задача 17:

Петя купил общую тетрадь объемом 96 листов и пронумеровал все ее страницы по порядку числами от 1 до 192. Вася вырвал из этой тетради 25 листов и сложил все 50 чисел, которые на них написаны. Могло ли у него получиться 1990?

Задача 18:

Произведение 22 целых чисел равно 1. Докажите, что их сумма не равна нулю.

Задача 19:

Можно ли составить магический квадрат из первых 36 простых чисел?

Задача 20:

В ряд выписаны числа от 1 до 10. Можно ли расставить между ними знаки « + » и « – » так, чтобы значение полученного выражения было равно нулю?

Замечание: учтите, что отрицательные числа также бывают четными и нечетными.

Задача 21:

Кузнечик прыгает по прямой, причем в первый раз он прыгнул на 1 см в какую-то сторону, во второй раз – на 2 см и так далее. Докажите, что после 1985 прыжков он не может оказаться там, где начинал.

Задача 22:

На доске написаны числа 1, 2, 3, …, 1984, 1985. Разрешается стереть с доски любые два числа и вместо них записать модуль их разности. В конце концов на доске останется одно число. Может ли оно равняться нулю?

Задача 23:

Можно ли покрыть шахматную доску доминошками 1 × 2 так, чтобы свободными остались только клетки a1 и h8?

Задача 24:

К 17-значному числу прибавили число, записанное теми же цифрами, но в обратном порядке. Докажите, что хотя бы одна цифра полученной суммы четна.

Задача 25:

В народной дружине 100 человек и каждый вечер трое из них идут на дежурство. Может ли через некоторое время оказаться так, что каждый с каждым дежурил ровно один раз?

Задача 26:

На прямой отмечено 45 точек, лежащих вне отрезка AB. Докажите, что сумма расстояний от этих точек до точки A не равна сумме расстояний от этих точек до точки B.

Задача 27:

По кругу расставлено 9 чисел – 4 единицы и 5 нулей. Каждую секунду над числами проделывают следующую операцию: между соседними числами ставят ноль, если они различны, и единицу, если они равны; после этого старые числа стирают. Могут ли через некоторое время все числа стать одинаковыми?

Задача 28:

25 мальчиков и 25 девочек сидят за круглым столом. Докажите, что у кого-то из сидящих за столом оба соседа – мальчики.

Задача 29:

Улитка ползет по плоскости с постоянной скоростью, каждые 15 минут поворачивая под прямым углом. Докажите, что вернуться в исходную точку она сможет лишь через целое число часов.

Задача 30:

Три кузнечика играют на прямой в чехарду. Каждый раз один из них прыгает через другого (но не через двух сразу!). Могут ли они после 1991 прыжка оказаться на прежних местах?

Задача 31:

Есть 101 монета, из которых 50 фальшивых, отличающихся по весу на 1 грамм от настоящих. Петя взял одну монету и за одно взвешивание на весах со стрелкой, показывающей разность весов на чашках, хочет определить фальшивая ли она. Сможет ли он это сделать?

Задача 32:

Можно ли выписать в ряд по одному разу цифры от 1 до 9 так, чтобы между единицей и двойкой, двойкой и тройкой, …, восьмеркой и девяткой было нечетное число цифр?



Задачная база >> Разное >> Математический кружок. 1-й год >> Четность >> Четность и нечетностьПоказать решения