ЗАБА Математические олимпиады и олимпиадные задачи
Задачная база >> Разное >> Материалы Кировской ЛМШ, 2000 г, 6 класс >> Разнобой-1Убрать решения
Разное. Материалы Кировской ЛМШ, 2000 г, 6 класс. Разнобой-1

Задача 1: На двух кустах сидело 25 воробьев. После того как с первого куста перелетело на второй 5, а со второго улетело 7 воробьев, то на первом кусте осталось вдвое больше воробьев, чем на втором. Сколько воробьев было на каждом кусте первоначально?

Решение: Пусть x – количество воробьёв на первом кусте. Тогда x – 5 = 2 × (25 – x – 7 + 5). Решаем, и получаем, что x = 17.

Задача 2: Золотоискатель Джек добыл 9 кг. песка. Сможет ли он за три взвешиванимя отмерить 2 кг песка с помощью двухчашечных весов а) с двумя гирями – 200 г и 50 г; б) с одной гирей 200 г?

Решение: Сможет в обоих пунктах

а) сначала надо без гирь отмерить 4 кг 500 г и 2 кг 250 г, а третьим взвешиванием при помощи гирь и отмеренного веса 2 кг 500 г взвесить 2 кг.

б) При помощи гири взвесим 4.400 и 4.600, потом разделим 4.400 на две равные части по 2.200 и, наконец, отвесим ровно 2 кг.

Задача 3: Часы показывают час дня. Найти ближайший момент времени, когда часовая и минутная стрелка совпадут.

Решение: Это произойдет через 1/11 часа.

Задача 4: Из 100 туристов, отправляющихся в заграничное путешествие, немецким языком владеют 30 человек, английским – 28, французским – 42. Английским и немецким одновременно владеют 8 человек, английским и французским – 10, немецким и французским – 5, всеми тремя языками – 3. Сколько туристов не владеют ни одним языком?

Решение: только английским владеет 13 человек, только французским – 30, только немецким – 20 человек. 20 человек не знают ни одного из этих языков.

Задача 5: Три человека выписали по 100 различных слов. После этого слова, встречающиеся не менее двух раз, вычеркнули. В результате у одного осталось 45 слов, у другого – 68, а у третьего – 54. Докажите, что по крайней мере одно слово выписали все трое.

Решение: Если бы это было не так, то сумма всех попарных пересечений содержала бы чётное число слов.

Задача 6: Оксана Николаевна раздавала фумигаторы для шести отрядов. Каждому отряду она давала половину всех имеющихся у нее фумигаторов и еще полфумигатора. Оксана Николаевна раздала все фумигаторы. Сколько их всего было?

Решение: 63.

Задача 7: На доске написаны 10 единиц и 10 двоек. За ход разрешается стереть две любые цифры и, если они были одинаковыми, написать двойку, а если разными – единицу. Если последняя оставшаяся на доске цифра – единица, то выигрывает первый игрок, а если двойка – то второй. Докажите, что игрок, который ходит вторым, всегда выигрывает.

Решение: Чётность количества единиц не меняется.

Задача 8: Каких натуральных чисел, меньших 200,000, больше: тех, которые делятся на 8 и не делятся на 9, или тех, которые делятся на 9 и не делятся на 8?

Решение: Первых. Добавим и к тем, и к другим все числа, кратные 72. Тогда вопрос превратится в такой: каких чисел больше – тех которые делятся на 8 или тех, которые делятся на 9? Ответ на этот вопрос очевиден.



Задачная база >> Разное >> Материалы Кировской ЛМШ, 2000 г, 6 класс >> Разнобой-1Убрать решения