ЗАБА Математические олимпиады и олимпиадные задачи
Задачная база >> Разное >> Математический кружок. 1-й год >> Комбинаторика-1Показать решения
С.А.Генкин, И.В.Итенберг, Д.В.Фомин. Математический кружок. Комбинаторика-1

Задача 1:

В магазине «Все для чая» есть 5 разных чашек и 3 разных блюдца. Сколькими способами можно купить чашку с блюдцем?

Задача 2:

В магазине «Все для чая» есть еще 4 чайные ложки. Сколькими способами можно купить комплект из чашки, блюдца и ложки?

Задача 3:

В Стране Чудес есть три города: А, Б и В. Из города А в город Б ведет 6 дорог, а из города Б в город В – 4 дороги. Сколькими способами можно проехать от А до В?

Задача 4:

В Стране Чудес есть четыре города: А, Б и В и Г. Из города А в город Б ведет 6 дорог, а из города Б в город В – 4 дороги, Из города А в город Г – две дороги, и из города Г в город В – тоже две дороги. Сколькими способами можно проехать от А до В?

Задача 5:

В магазине «Все для чая» по-прежнему продается 5 чашек, 3 блюдца и 4 чайные ложки. Сколькими способами можно купить два предмета с разными названиями?

Задача 6:

Назовем натуральное число «симпатичным» , если в его записи встречаются только нечетные цифры. Сколько существует 4-значных «симпатичных» чисел?

Задача 7:

Монету бросают трижды. Сколько разных последовательностей орлов и решек можно при этом получить?

Задача 8:

Каждую клетку квадратной таблицы 2 × 2 можно покрасить в черный или белый цвет. Сколько существует различных раскрасок этой таблицы?

Задача 9:

Сколькими способами можно заполнить одну карточку в лотерее «Спорт-про-г-ноз»? (В этой лотерее нужно предсказать итог тринадцати спортивных матчей. Итог каждого матча – победа одной из команд либо ничья; счет роли не играет).

Задача 10:

Алфавит племени Мумбо-Юмбо состоит из трех букв А, Б и В. Словом является любая последовательность, состоящая не более, чем из 4 букв. Сколько слов в языке племени Мумбо-Юмбо? Указание. Сосчитайте отдельно количества одно-, двух-, трех- и четырехбуквенных слов.

Задача 11:

В футбольной команде (11 человек) нужно выбрать капитана и его заместителя. Сколькими способами это можно сделать?

Задача 12:

Сколькими способами можно сделать трехцветный флаг с горизонтальными полосами одинаковой ширины, если имеется материя шести различных цветов?

Задача 13:

Сколькими способами можно поставить на шахматную доску белую и черную ладьи так, чтобы они не били друг друга?

Задача 14:

Сколькими способами можно поставить на шахматную доску белого и черного королей так, чтобы получилась допустимая правилами игры позиция?

Задача 15:

Сколько существует трехзначных чисел, в записи которых цифры 1, 2, 3 встречаются ровно по одному разу?

Задача 16:

Сколькими способами можно выложить в ряд красный, черный, синий и зеленый шарики?

Задача 17: Слово – любая конечная последовательность букв русского алфавита. Выясните, сколько различных слов сожно составить из слов

а) «ВЕКТОР»;

б) «ЛИНИЯ»;

в) «ПАРАБОЛА»;

г) «БИССЕКТРИСА»;

д) «МАТЕМАТИКА»;

Задача 22:

В стране 20 городов, каждые два из которых соединены авиалинией. Сколько авиалиний в этой стране?

Задача 23:

Сколько диагоналей в выпуклом n-угольнике?

Задача 24:

Бусы – это кольцо, на которое нанизаны бусины. Бусы можно поворачивать, но не переворачивать. Сколько различных бус можно сделать из 13 разноцветных бусин?

Задача 25:

Предположим теперь, что бусы можно и переворачивать. Сколько тогда различных бус можно сделать из 13 разноцветных бусин?

Задача 26:

Сколько существует 6-значных чисел, в записи которых есть хотя бы одна четная цифра?

Задача 27:

В алфавите племени Бум-Бум шесть букв. Словом является любая последовательность из шести букв, в которой есть хотя бы две одинаковые буквы. Сколько слов в языке племени Бум-Бум?

Задача 28:

В киоске «Союзпечать» продаются 5 видов конвертов и 4 вида марок. Сколькими способами можно купить конверт с маркой?

Задача 29:

Сколькими способами можно выбрать гласную и согласную буквы из слова «КРУЖОК»?

Задача 30:

На доске написаны 7 существительных, 5 глаголов и 2 прилагательных. Для предложения нужно выбрать по одному слову каждой из этих частей речи. Сколькими способами это можно сделать?

Задача 31:

У двух начинающих коллекционеров по 20 марок и по 10 значков. Честным обменом называется обмен одной марки на одну марку или одного значка на один значок. Сколькими способами коллекционеры могут осуществить честный обмен?

Задача 32:

Сколько существует 6-значных чисел, все цифры которых имеют одинаковую четность?

Задача 33:

Надо послать 6 срочных писем. Сколькими способами это можно сделать, если для передачи писем можно использовать трех курьеров и каждое письмо можно дать любому из курьеров?

Задача 34:

Сколькими способами из полной колоды (52 карты) можно выбрать 4 карты разных мастей и достоинств?

Задача 35:

На полке стоят 5 книг. Сколькими способами можно выложить в стопку несколько из них (стопка может состоять и из одной книги)?

Задача 36:

Сколькими способами можно поставить 8 ладей на шахматную доску так, чтобы они не били друг друга?

Задача 37:

На танцплощадке собрались N юношей и N девушек. Сколькими способами они могут разбиться на пары для участия в очередном танце?

Задача 38:

Чемпионат России по шахматам проводится в один круг. Сколько играется партий, если участвуют 18 шахматистов?

Задача 39:

Сколькими способами можно поставить на шахматную доску так, чтобы они не били друг друга а) две ладьи; б) двух королей; в) двух слонов; г) двух коней; д) двух ферзей?

Задача 40:

У мамы два яблока, три груши и четыре апельсина. Каждый день в течение девяти дней подряд она дает сыну один из оставшихся фруктов. Сколькими способами это может быть сделано?

Задача 41:

Сколькими способами можно поселить 7 студентов в три комнаты: одноместную, двухместную и четырехместную?

Задача 42:

Сколькими способами можно расставить на первой горизонтали шахматной доски комплект белых фигур (король, ферзь, две ладьи, два слона и два коня)?

Задача 43:

Сколько слов можно составить из пяти букв А и не более чем из трех букв Б?

Задача 44:

Сколько существует 10-значных чисел, в которых имеется хотя бы две одинакоые цифры?

Задача 45:

Каких 7-значных чисел больше: тех, в записи которых есть 1, или остальных?

Задача 46:

Кубик бросают трижды. Среди всех возможных последовательностей результатов есть такие, в которых хотя бы один раз встречается шестерка. Сколько их?

Задача 47:

Сколькими способами можно разбить 14 человек на пары?

Задача 48:

Сколько существует 9-значных чисел, сумма цифр которых четна?



Задачная база >> Разное >> Математический кружок. 1-й год >> Комбинаторика-1Показать решения