|
Задачная база >> Разное >> Математический кружок. 2-й год >> Комбинаторика-2 >> Шары и перегородки | Показать решения |
|
С.А.Генкин, И.В.Итенберг, Д.В.Фомин. Математический кружок, 2-й год. Комбинаторика-2. Шары и перегородки |
|
6 ящиков занумерованы числами от 1 до 6. Сколькими способами можно разложить по этим ящикам 20 одинаковых шаров так, чтобы ни один ящик не оказался пустым?
Задача 32:
6 ящиков занумерованы числами от 1 до 6. Сколькими способами можно разложить по этим ящикам 20 одинаковых шаров (на этот раз некоторые ящики могут оказаться пустыми)?
Задача 33:
Сколькими способами натуральное число n можно представить в виде суммы
а) k натуральных слагаемых;
б) k неотрицательных целых слагаемых (представления, отличающиеся порядком слагаемых, считаются различными)?
Задача 34:
Сколькими способами 12 пятаков можно разложить по 5 различным кошелькам так, чтобы ни один кошелек не оказался пустым?
Задача 35:
Переплетчик должен переплести 12 одинаковых книг в красный, зеленый или синий переплеты. Сколькими способами он может это сделать?
Задача 36:
Сколькими способами можно разрезать ожерелье, состоящее из 30 различных бусин на 8 частей (резать можно только между бусинами)?
Задача 37:30 человек голосуют по 5 предложениям. Сколькими способами могут распределиться голоса, если каждый голосует только за одно предложение и учитывается лишь количество голосов, поданных за каждое предложение?
Задача 38:
В почтовом отделении продаются открытки 10 видов. Сколькими способами можно купить в нем
а) 12 открыток;
б) 8 открыток;
в) 8 различных открыток?
Задача 39:
Поезду, в котором находится m пассажиров, предстоит сделать n остановок.
а) Сколькими способами могут выйти пассажиры на этих остановках?
б) Решите ту же задачу, если учитывается лишь количество пассажиров, вышедших на каждой остановке.
Задача 40:
В кошельке лежит по 20 монет достоинством в 10, 15 и 20 копеек. Сколькими способами можно из этих 60 монет выбрать двадцать?
Задача 41:
Сколькими способами можно расположить в 9 лузах 7 белых и 2 черных шара? Часть луз может быть пустой, а лузы считаются различными.
Задача 42:
Сколькими способами 3 человека могут разделить между собой 6 одинаковых яблок, один апельсин, одну сливу и один мандарин?
Задача 43:
Сколькими способами 4 черных шара, 4 белых шара и 4 синих шара можно разложить в 6 различных ящиков?
Задача 44:
Общество из n членов выбирает из своего состава одного представителя.
а) Сколькими способами может произойти открытое голосование, если каждый голосует за одного человека (быть может, и за себя)?
б) Решите ту же задачу, если голосование – тайное, т.е. учитывается лишь число голосов, поданных за каждого кандидата, и не учитывается, кто за кого голосовал персонально.
Задача 45:
Сколькими способами можно выложить в ряд 5 красных, 5 синих и 5 зеленых шаров так, чтобы никакие два синих шара не лежали рядом?
Задача 46:
Сколькими способами можно представить 1000000 в виде произведения трех множителей, если произведения, отличающиеся порядком множителей, считаются различными?
Задача 47:
На полке стоит 12 книг. Сколькими способами можно выбрать из них 5 книг, никакие две из которых не стоят рядом?
Задачная база >> Разное >> Математический кружок. 2-й год >> Комбинаторика-2 >> Шары и перегородки | Показать решения |