|
Задачная база >> Национальные зарубежные олимпиады >> Индия >> Региональная индийская олимпиада. >> 1998 | Показать решения |
|
Национальные зарубежные олимпиады. Индия. Региональная индийская олимпиада.. 1998 |
|
Задача 2: Сумма квадратов n простых чисел, каждое из которых больше 5 делится на 6. Докажите, что и n тоже делится на 6.
Задача 3: Докажите, что для любого натурального n:
Задача 4: В равнобедренном треугольнике ABC угол при вершине равен 30. Точки A′,B′C′ получаются отражением вершин относительно противоположных сторон. Докажите, что треугольник A′B′C′ равносторонний.
Задача 5: Какое наименьшее значение может принимать 20 не обязательно различных натуральных чисел с суммой 801.
Задача 6: Дано 7-элементное множество A. Придумайте набор троек элементов A такой, что любая пара элементов A принадлежит ровно одной тройке набора.
Задачная база >> Национальные зарубежные олимпиады >> Индия >> Региональная индийская олимпиада. >> 1998 | Показать решения |